翻訳と辞書
Words near each other
・ Inertial number
・ Inertial platform
・ Inertial redshift
・ Inertial reference unit
・ Inertial response
・ Inertial supercharging effect
・ Inertial switch
・ Inertial Upper Stage
・ Inertial wave
・ Inertialess drive
・ Inerting system
・ Inertinite
・ Inertron
・ Ineffabilis Deus
・ Ineffability
Ineffable cardinal
・ Ineffable Mysteries from Shpongleland
・ Ineffective assistance of counsel
・ Ineffective erythropoiesis
・ Inefficiency
・ Inegocia
・ Ineidis Casanova
・ Inejiro Asanuma
・ INEK (PHP)
・ Inekak
・ Inekak-e Dudera
・ Inekaren
・ Ineke
・ Ineke Bakker
・ Ineke Dezentjé Hamming-Bluemink


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ineffable cardinal : ウィキペディア英語版
Ineffable cardinal
In the mathematics of transfinite numbers, an ineffable cardinal is a certain kind of large cardinal number, introduced by .
A cardinal number \kappa is called almost ineffable if for every f: \kappa \to \mathcal(\kappa) (where \mathcal(\kappa) is the powerset of \kappa) with the property that f(\delta) is a subset of \delta for all ordinals \delta < \kappa, there is a subset S of \kappa having cardinal \kappa and homogeneous for f, in the sense that for any \delta_1 < \delta_2 in S, f(\delta_1) = f(\delta_2) \cap \delta_1.
A cardinal number \kappa is called ineffable if for every binary-valued function f : \mathcal_(\kappa) \to \, there is a stationary subset of \kappa on which f is homogeneous: that is, either f maps all unordered pairs of elements drawn from that subset to zero, or it maps all such unordered pairs to one.
More generally, \kappa is called n-ineffable (for a positive integer n) if for every f : \mathcal_(\kappa) \to \ there is a stationary subset of \kappa on which f is n-homogeneous (takes the same value for all unordered n-tuples drawn from the subset). Thus, it is ineffable if and only if it is 2-ineffable.
A totally ineffable cardinal is a cardinal that is n-ineffable for every 2 \leq n < \aleph_0. If \kappa is (n+1)-ineffable, then the set of n-ineffable cardinals below \kappa is a stationary subset of \kappa.
Totally ineffable cardinals are of greater consistency strength than subtle cardinals and of lesser consistency strength than remarkable cardinals. A list of large cardinal axioms by consistency strength is available here.
==References==

*.
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ineffable cardinal」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.